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LETTER TO THE EDITOR 

Threshold and scaling in percolation with restricted valence 

J KertCsztOn, B K Chakrabartit(1n and J A M S DuarteS 
t Institute for Theoretical Physics, University of Cologne, D5000 Koln 41, West Germany 
$ Laborat6rio de Fisica, Faculdade di Ciencias, Universidade do Porto, 4000 Porto, 
Portugal 

Received 8 October 1981 

Abstract. Monte Carlo calculations have been carried out to study the problem of 
percolation with restricted valence on the square and simple cubic lattices. The results are in 
full agreement with the expectations: there is no transition when the restriction ( 0 )  is equal 
to two, while even for U = 3 the transition occurs and the correlation length exponent, 
determined via finite size scaling, is within the numerical accuracy the same as that in the 
unrestricted random percolation. The maximum random occupancy as a function of the 
restriction is also determined. 

Recently a new lattice statistical problem was defined: percolation with restricted 
valence (Gaunt etal 1979). In this model lattice sites (bonds) are occupied randomly as 
in the usual percolation problems, but the occupation is prohibited if it would lead to an 
occupied site having valence higher than a prescribed value U. (The valence of a site is 
the number of different paths to neighbouring occupied sites.) The practical use of this 
model may be the descriptions of steric hindrance effects in gelation (Stauffer et a1 
1981). If the coordinations number is Q, U d Q of course. U = 0 and U = 1 correspond 
to the trivial cases of isolated single sites and isolated pairs of sites, respectively; U = Q is 
the unrestricted model. A number of papers have been devoted to the problem of 
restricted valence animals. Gaunt etal (1979) have shown rigorously that the dominant 
singularity of the generating function of animais can be characterised by different 
exponents for U = 2 than for U a 3. Furthermore, extensive series analysis for such 
restricted valence animals on different lattices in 2, 3 and 4 dimensions suggests that 
there is no change in this exponent for v 3 (Gaunt et a1 1979,1980, Whittington et a1 
1979, Duarte and Ruskin 1980, Duarte 1981). Family has used real space renor- 
malisation groups to show that lattice animals with U = 2 are in a different uni- 
versality class than lattice animals with U > 2 (Family 1980 and unpublished). 

The animal problem is the zero concentration limit of the general percolation model 
(Stauffer 1979). It is difficult to go beyond this limit by series expansions, since 
restricted valence percolation is essentially a correlated percolation where the occupa- 
tion of a site depends on the environment and so the single cluster approach of the series 
expansion method seems not to be adequate here (see below for a more detailed 
discussion of this problem). In this paper we give an account of a Monte Carlo (MC) 
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investigation of the site percolation transition (appearance of an infinite cluster) on the 
square and simple cubic lattices. The natural parameter of the problem is the concen- 
tration x of occupied sites. If there is a restriction, the lattice cannot be fully occupied 
and there must be an x,(v) maximum occupancy depending on the lattice and the 
restriction, x,(u) s 1 (equality holds only for U = 0). 

In the computer program each site corresponds to a matrix element M, the absolute 
value of which is the actual valency of the site plus unity and the sign shows whether it is 
occupied or not. First the lattice is empty and M = -1 is set for each site. Then the 
lattice is gradually filled until the concentration x has been reached. The main steps 
during this procedure are as follows. A site is randomly chosen. If the occupation is 
possible, the absolute value of the neighbouring matrix elements is enlarged by one and 
the sign of the actual matrix element is set to be positive. Two versions were used. 

(i) After visiting a site the algorithm is simply repeated, thus multiple visits are 
allowed. 

(ii) The unvisited sites are stored in a separate array and sites are randomly picked 
out from there. After the visit the site is dropped from this array independent of 
whether or not occupation was allowed. 

The percolation transition is indicated by the appearance of a cluster percolating 
from top to bottom and the multi-labelling technique (Hoshen and Kopelman 1976) 
was used to find the threshold xc  of the actual realisation. The samples are characterised 
by their linear size b .  In order to see the size effect we studied samples with b = 20,50, 
100, 180,240, 360 on the square lattice and b = 10,20,30,40,50 on the simple cubic 
lattice. For U = 2 no transition was found (except for a few cases on the smallest samples 
due to fluctuations). For U = 3 we found a clear percolation transition. In order to 
determine the correlation length exponent Y and the infinite size limit of the threshold 
concentration x c  we applied the usual finite size scaling analysis (see e.g. Reynolds et a1 
1980). For ZI = 3 and for each size b, p realisations were generated with pb2 3 5 x lo6 
and p b 3 a  lo’ in two and three dimensions, respectively. The mean (xc(b))  and the 
width u ( b )  = ( ( ~ c 2 ( b ) - ( x , ( b ) ) ~ ) ) * ’ ~  of the distribution of the actual thresholds x c  were 
determined. v and ( x , ( b ) )  must scale according to finite size scaling (Reynolds et a1 
1980): 

v a b-’I” ( la )  

I ( x c ( b ) ) - x c ( a ) I a  b-”” (1b) 

with Y being the critical exponent of the correlation length. 
Figure 1 shows a plot of In U against In b for (a) the square, (b) the simple cubic case 

with U = 3. From the slopes we find effective exponents Y 2 D  = 1.35 * 0.03 and Y 3 D  = 
0.91 f 0.08 in two and three dimensions, respectively. For the unrestricted problem the 
most accurate available values are V2D = 1.333 * 0.002 (Blote et a1 1981) and V 3 D  = 
0.88 * 0.01 (Heermann and Stauffer 1981). From our calculations we can conclude that 
the change over to the unrestricted critical behaviour seems to take place between 
valences 2 and 3 as in the case of restricted valence animals (Gaunt et a1 1979, 1980, 
Whittingion et a1 1979, Duarte and Ruskin 1980, Family 1980, Duarte 1981). In other 
words: if there is a phase transition in the restricted valence problem (U a 3), the critical 
behaviour is probably in the same universality class as that of the unrestricted 
percolation problem. 

In figure 2 the plot according to equation ( l b )  is shown for determining the critical 
concentration xc .  We calculated the critical concentrations xc  and the maximum 
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Figure 1. Determination of the critical exponent v for o = 3 from the log-log plot (r against 
b (for definitions see the text). (a) square lattice, vzD = 1.35 * 0.03, ( b )  simple cubic lattice, 
~3D=0.91*0.08. 

x ,  ( b l  

Figure 2. Extrapolation to the infinite system size for determination of the critical 
concentrations x ,  with tr = 3 using b-”” plotted against x,(b) (for definitions see the text). 
Plots are taken both with calculated (0) and best estimates for the universal value of the 
exponent (X) (Blote et a1 1981, Heermann and Stauffer 1981); (a) square lattice, x,= 
0.5855*0.001, ( b )  simple cubic lattice, x,=0.3505*0.0015. 

random concentrations xm for all possible restrictions (table 1). Since version (i) of our 
program becomes infinitely slow at xm we used version (ii) here. However, the 
rearranging of the array which stores the unvisited sites takes such a long time that at x E  
version (ii) is more than an order of magnitude slower. 
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Table 1. Critical and maximum concentrations for the square and simple cubic lattices. 
Note that the ‘restricted’ threshold is in two dimensions lower and in three dimensions 
higher than the unrestricted one. 

Square Simple cubic 

t’ XC Xm XC X, 
~~~~ ~ 

a - 0.365 rt0.002 - 0.305*0.002 
1 - 0.413 i50.002 - 0.344f0.002 
2 - 0.526*0.002 - 0.405 * 0.002 
3 a.5855*0.001 0.706*0.002 0.3505 rt0.0015 0.503 iz0.002 
4 0.59271t0.0002“ 1 0.332 f 0.002 0.625 f 0.002 
5 - - 0.330*0.002 0.764 f 0.002 
6 - - 0.3117f0.0003b 1 

a Derrida and De Seze (1981). 
Heermann and Stauffer (1981). 

The highest possible concentration xm is, as far as we know, a new lattice statistical 
quantity. One can always find a ‘crystalline’ structure where the concentration is higher 
(see figure 3(u)) ,  but due to the rundum process of occupation this regular maximum 
occupancy can never be reached. The situation is similar to the case of hexagonal 
close-packed and randomly close-packed hard spheres. Of course xm is well defined 
only in the thermodynamic limit @-+a); in finite systems the actual maximum 
occupancy has a distribution becoming sharper, the larger the system is. The numbers in 
table 1 are obtained from estimates at two different sizes. 
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Ftpre 3. The regular arrangements of maximum occupied sites satisfying the restrictions 
given an upper limit for the maximum random concentration. Examples are shown on the 
square lattice. ( a )  realisations of regular arrangements for U = 0, 1 ,2  and 3; x, = 4. f, f and 
4. respectively, ( b )  realisations for the random arrangements; for the maximum concen- 
trations see table 1. (0) occupied site; (0) empty site. 
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Finally let us make a few remarks on the other two approximate methods usually 
used in percolation problems: series expansion and renormalisation group techniques. 
As already mentioned above, the present problem is clearly seen to be different from 
simple investigations of the structure of the mean size series as in unrestricted random 
percolation, where now the mean size is restricted only to the clusters with the pertinent 
valence restriction. The usual second moment expansion is 

with SI + s2 + . . . +so = s, where p is the site occupation probability, si is the number of 
sites in the cluster having valence equal to i, t is the number of perimeter sites and 
g ( s t ,  s2, . . . s,; t )  is simply taken from the perimeter expansions of the extensive 
tabulations of Gaunt et a1 (1979, 1980), Whittington et a1 (1979), and Duarte and 
Ruskin (1980). Clearly it is impossible to combine a restricted valence lattice covering 
(in the Monte Carlo sense above) with the usual meaning of 'perimeter'. The structure 
of the S " ( p )  for U < 4  no longer shows a transition for square, triangular and simple 
cubic site problems although for higher valences on the last two lattices (eleven and ten 
term long series, respectively) an apparent singularity is obtained near to the unrestric- 
ted critical point with comparable values for the exponent y. This series method is not 
an approximation to the MC problem studied above but it is a different problem of rather 
mathematical interest: what is the leading singularity in the mean size series by selecting 
the terms from the point of view of the valence? 

It seems to be plausible to apply a real space renormalisation group (RSRG) 
transformation (Reynolds eta1 1980) to the restricted valence problem. .If there is more 
than one parameter this method usually leads to surprisingly good descriptions of the 
universality classes (Family 1980). However, there are exceptions (Nakanishi et ul 
1981) where the simple RSRG does not work and the restricted valence percolation 
problem is one of them. A natural way of introducing the second parameter is to say 
that the valence of a site is restricted to o with a given probability s and unrestricted with 
1 - s. However, in a small cell one will find many percolating configurations even if 
U = 2; thus the renormalisation group will predict a transition in this case too, in 
contradiction with our MC resultt. One has to go to bigger cells: the side of the cell must 
be much larger than the average chain length at the maximum occupancy (see figure 
3(b)) .  But large cells can be treated only by MC techniques and the handling with two 
parameters is difficult here: the simple MC simulation is the most adequate method for 
the restricted valence percolation problem. 

In conclusion we determined the critical and maximum concentrations for the 
restricted valence percolation on the square and simple cubic lattices. Our results 
suggest that whenever there is a phase transition (valence U 3) the critical exponents 
are the same as in the unrestricted problem. 

We gratefully acknowledge that H L Frisch indirectly suggested the problem in context 
with polymers (D Stauffer, private communication). We are grateful to D Stauffer for 
arranging this collaboration and for a critical reading of the manuscript. We also thank 
H Kuhl for his help with the drawings and F Family for kind correspondence. 

t Some years ago the Boston University group also arrived at the conclusion that small cell RSRG is not 
appropriate to investigate restricted valence percolation (W Klein, private communication). 
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